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Power System Stability

A Frequency instability
Associated with an imbalance between load and generation
Demand response based on temporal shifting of load

[ Short, I nfield,G&ré&reyiBooD7ard] NV
[ Mat hi eu, Koch, & Call away 0612],

A Voltage instability

Associated with operation that nearsthel | mi t s of t
power transfer capability

Demand response based on spatial shifting of load

How to control flexible loads in order to
Improve voltage stability after a disturbance?

Introduction
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Voltage Stability

ADi st anceaose mintb hef it he PV ct

Often computed using continuation methods, which are difficult
to embed within an optimization problem

Voltage t ‘

Power

Introduction >
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Voltage Stability

ADi st anceaose mintb hef it he PV ct

Often computed using continuation methods, which are difficult
to embed within an optimization problem

A voltage stability metric based on power flow sensitivities is

based on the smallest singular value of the power flow Jacobian
[ Tiranuchi't & Thomas 688], |

Voltage t

\

The power flow
Jacobian is singular:
smallest singular
value equal to zero

Power

Introduction >
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Voltage t

Our Approach

A Maximize the smallest singular value of the power
flow Jacobian via control of flexible load demands

A Spatial shifting of loads with total demand held
constant over time to maintain frequency stability

Introduction

\

The power flow
Jacobian is singular:
smallest singular
value equal to zero

Power
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Multi-Period Approach

Initial operating point

Power flow solvability
boundary (singular Jacobian)

Introduction
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Multi-Period Approach

Initial operating point

Post-disturbance
— operating point

Power flow solvability
boundary (singular Jacobian)
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_ EES-UETP (Electric Energy Systems i University Enterprise Training Partnership) 6/30




Multi-Period Approach

Initial operating point

Post-disturbance
— operating point

After reallocating
flexible load

Power flow solvability
boundary (singular Jacobian)
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Multi-Period Approach

Initial operating point

Post-disturbance
— operating point

After reallocating
flexible load

Generation redispatch,

Power flow solvability energy payback

boundary (singular Jacobian)

Introduction
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Multi-Period Approach

Initial operating point

Post-disturbance
— operating point

After reallocating
flexible load

Generation redispatch,

Power flow solvability energy payback

boundary (singular Jacobian)

Introduction
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Problem Formulation
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Assumptions

A Load models
Constant power factor
Flexible loads at some or all PQ buses

Total demand from flexible loads held constant at each period

A Generator models
Modeled as PV buses immediately after the disturbance

Active power generation redispatched in subsequent periods

We first show the single-period formulation,
and then extend to a multi-period setting.
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Smallest Singular Value Maximization

max A

subject to
J (9 V)T J (9 V) —XI>0 Ao < smallest singular value of

— the power flow Jacobian

E Pd;z'- — detomf Total flexible load demand is constant
1€SpR
F (x) — ( AC power flow equations
G(x) >0 Operational limits

L= {Pg:(Qg: Pda (’Qd: ‘/, 9}

Directly solving this problem is challenging

Simil ar to the formul ations 1 n

EES-UETP (Electric Energy Systems i University Enterprise Training Partnership) 12 /30



Solution via Successive Linearization

A Use singular value sensitivities and a linearization of the
AC power flow equations

A Sensitivity of the singular values A; for the Jacobian J (&)

with respect to a parameterin £¢=1[6; ... 6, Vi ... V,]':
N 50 ((T(E))TT(E)

/

Left eigenvector Right eigenvector

The approximate change in Ag is

NV REICIIETCIIN PO RECITETCIN B
i=1 : :

Similar to the approach in
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Incremental Formulation

Take a step that seeks to increase

max A\ _
U the smallest singular value

subject to

The singular value sensitivity

Z AFii =10 Total flexible load demand is constant
1€SPR
f(A;g) — () Linearized AC power flow equations
g(Ax) >0 Linearized operational constraints

See [ Yao, Mathieu, & Mol za
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Successive Linearization Algorithm

Solve the base case
AC power flow

Solve the
incremental
optimization problem

Update variables

Run AC power flow

=

l Yes

Output the
solution

{P97Q99Pd7 Qdaeava )‘U}

A{PganananaGaV7 AU}

{Pganana Qd?gava)\ﬂ}
+
A{PQHQQ?Pd? Qdaeava )‘U}

{PQ‘: QQW Pda Qd7 91 V7 AU}
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Recall the Multi-Period Approach

Initial operating point

Post-disturbance
— Operating point

Reallocate flexible
load (t=1)

Redispatch generation for
energy payback (t = 2)
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Recall the Multi-Period Approach

Reallocate flexible
load (t=1)

Redispatch generation for
energy payback (t = 2)

Optimize flexible loads in these steps
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Multi-Period Formulation

. - Optimize a weighted sum of the smallest
1111t11 —Q )\0(1) +6C (PG(—))) singular value and the generation
x(t) redispatch cost for energy payback

subject to
J (t)TJ (t) _ )\g(t) I>0 Ao(t) < smallest singular value of

/— the power flow Jacobian

E Pd?i(l) — Pdafﬂfﬂ-i Total flexible load demand is constant

Power demand shifted from

Pyi(1) + Pygi(2) = Py;, Vi € Spp flexible | oad

o AC power flow equations
F (;’U(t)) o 0? g (I(t)) > and operational limits
t=1: Smallest singular value maximization
t=2: Energy payback for flexible loads
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Multi-Period Formulation

. . Optimize a weighted sum of the smallest
1111t11 —Q )\0(1) +6C (PG(—))) singular value and the generation
x(t) redispatch cost for energy payback

subject to
J (t)TJ (t) _ )\g(t) I>0 Ao(t) < smallest singular value of

/— the power flow Jacobian

E Pd?i(l) — Pdafﬂfﬂ-i Total flexible load demand is constant

Power demand shifted from

Ppi(1)+ Pgi(2) = Pj;, Vi€SpR | exible |oad

F (;’U(t)) — 0. g (;’E(t)) > () AC power flow equations

and operational limits

Solve using a successive linearization algorithm
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Test Cases
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Nine-Bus Test Case

'7\4' —®

Smallest Singular Value: 1.0895 > 0.4445

59% decrease
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Results: Smallest Singular Value
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6.1% improvement in the smallest singular
value from spatially shifting controllable loads
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Results: Generation Cost
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0.8% increase in generation cost from
spatially shifting controllable loads
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Convergence Rate
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The successive linear programming algorithm
typically converges in a few tens of iterations
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Trade-Off Between Smallest Singular
Value and Generation Cost
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The weights in the objective function effectively
control the trade-off between higher generation
cost and improved voltage stability margins
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IEEE 118-Bus Test Case

Computation time: 282 seconds

— _/
. Y : : :
4.6% improvement in the 0.2% increase in the
smallest singular value total generation cost
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